Exercise 223

The average temperature (in degrees Celsius) of a city in the northern United States can be modeled by the function $T(x)=5+18 \sin \left[\frac{\pi}{6}(x-4.6)\right]$, where x is time in months and $x=1.00$ corresponds to January 1. Determine the month and day when the average temperature is $21^{\circ} \mathrm{C}$.

Solution

Set $T(x)=21$ and solve the equation for x.

$$
\begin{gathered}
21=5+18 \sin \left[\frac{\pi}{6}(x-4.6)\right] \\
16=18 \sin \left[\frac{\pi}{6}(x-4.6)\right] \\
\frac{16}{18}=\sin \left[\frac{\pi}{6}(x-4.6)\right]
\end{gathered}
$$

There are two angles, α and θ, that give $16 / 18$ after taking the sine. Taking the arcsine of $16 / 18$ on the calculator gives θ. α is $\pi-\theta$.

$$
\begin{array}{rlrl}
\alpha=\pi-\sin ^{-1}\left(\frac{16}{18}\right)=\frac{\pi}{6}(x-4.6) & \text { or } & \theta=\sin ^{-1}\left(\frac{16}{18}\right)=\frac{\pi}{6}(x-4.6) \\
& \frac{6}{\pi}\left[\pi-\sin ^{-1}\left(\frac{16}{18}\right)\right]=x-4.6 & \text { or } & \frac{6}{\pi} \sin ^{-1}\left(\frac{16}{18}\right)=x-4.6 \\
\frac{6}{\pi}\left[\pi-\sin ^{-1}\left(\frac{16}{18}\right)\right]+4.6=x & \text { or } & \frac{6}{\pi} \sin ^{-1}\left(\frac{16}{18}\right)+4.6=x \\
8.51 \approx x & \text { or } & & 6.69 \approx x
\end{array}
$$

Month 8 in the year is August. $0.51(31)=15.81$, so the day is 15 . August 15 is one date when the average temperature is $21^{\circ} \mathrm{C}$.

Month 6 in the year is June. $0.69(30)=20.7$, so the day is 20 . June 20 is one date when the average temperature is $21^{\circ} \mathrm{C}$.

